GDM - Ferns - Underlying Data: mastran

LCR / GDM
183
10
Added
13 Oct 2011

This dataset was first added to LRIS Portal on 13 Oct 2011.

This layer provides a transformation of environmental layer to best predict fern compositional turnover. Generalized Dissimilarity Modelling was used to produce a model of biotic composition in relationship to environment and biogeography. This model was used to transform and scale environmental layers to predict community composition. These transformed environmental layers can be used to predict commmunity composition changes, and to classify New Zealand into areas of similar biotic composition. The biotic data used for this model include all fern taxa from NVS recce data and estimated community compositions from pollen data.

Layer ID 244
Data type Grid
Resolution 100.000m

GDM - Trees and Shrubs - Underlying Data: calciumtran

LCR / GDM
173
8
Added
13 Oct 2011

This dataset was first added to LRIS Portal on 13 Oct 2011.

This layer provides a transformation of environmental layer to best predict tree and shrub compositional turnover. Generalized Dissimilarity Modelling was used to produce a model of biotic composition in relationship to environment and biogeography. This model was used to transform and scale environmental layers to predict community composition. These transformed environmental layers can be used to predict commmunity composition changes, and to classify New Zealand into areas of similar biotic composition. The biotic data used for this model include all non-fern tree and shrub taxa from NVS recce data and estimated community compositions from pollen data.

Layer ID 252
Data type Grid
Resolution 100.000m

GDM - All Plants - Underlying Data: raintran

LCR / GDM
177
12
Added
13 Oct 2011

This dataset was first added to LRIS Portal on 13 Oct 2011.

This layer provides a transformation of environmental layer to best predict plant compositional turnover. Generalized Dissimilarity Modelling was used to produce a model of biotic composition in relationship to environment and biogeography. This model was used to transform and scale environmental layers to predict community composition. These transformed environmental layers can be used to predict commmunity composition changes, and to classify New Zealand into areas of similar biotic composition. The biotic data used for this model include all vascular plant taxa from NVS recce data and estimated community compositions from pollen data.

Layer ID 233
Data type Grid
Resolution 100.000m

GDM - All Plants - Underlying Data: gdmytran

LCR / GDM
170
11
Added
13 Oct 2011

This dataset was first added to LRIS Portal on 13 Oct 2011.

This layer provides a transformation of environmental layer to best predict plant compositional turnover. Generalized Dissimilarity Modelling was used to produce a model of biotic composition in relationship to environment and biogeography. This model was used to transform and scale environmental layers to predict community composition. These transformed environmental layers can be used to predict commmunity composition changes, and to classify New Zealand into areas of similar biotic composition. The biotic data used for this model include all vascular plant taxa from NVS recce data and estimated community compositions from pollen data.

Layer ID 228
Data type Grid
Resolution 100.000m

GDM - All Plants - Underlying Data: junestran

LCR / GDM
174
12
Added
13 Oct 2011

This dataset was first added to LRIS Portal on 13 Oct 2011.

This layer provides a transformation of environmental layer to best predict plant compositional turnover. Generalized Dissimilarity Modelling was used to produce a model of biotic composition in relationship to environment and biogeography. This model was used to transform and scale environmental layers to predict community composition. These transformed environmental layers can be used to predict commmunity composition changes, and to classify New Zealand into areas of similar biotic composition. The biotic data used for this model include all vascular plant taxa from NVS recce data and estimated community compositions from pollen data.

Layer ID 229
Data type Grid
Resolution 100.000m

GDM - Ferns - Underlying Data: raintran

LCR / GDM
161
11
Added
13 Oct 2011

This dataset was first added to LRIS Portal on 13 Oct 2011.

This layer provides a transformation of environmental layer to best predict fern compositional turnover. Generalized Dissimilarity Modelling was used to produce a model of biotic composition in relationship to environment and biogeography. This model was used to transform and scale environmental layers to predict community composition. These transformed environmental layers can be used to predict commmunity composition changes, and to classify New Zealand into areas of similar biotic composition. The biotic data used for this model include all fern taxa from NVS recce data and estimated community compositions from pollen data.

Layer ID 247
Data type Grid
Resolution 100.000m

GDM - Ferns - Underlying Data: discoasttran

LCR / GDM
162
10
Added
13 Oct 2011

This dataset was first added to LRIS Portal on 13 Oct 2011.

This layer provides a transformation of environmental layer to best predict fern compositional turnover. Generalized Dissimilarity Modelling was used to produce a model of biotic composition in relationship to environment and biogeography. This model was used to transform and scale environmental layers to predict community composition. These transformed environmental layers can be used to predict commmunity composition changes, and to classify New Zealand into areas of similar biotic composition. The biotic data used for this model include all fern taxa from NVS recce data and estimated community compositions from pollen data.

Layer ID 240
Data type Grid
Resolution 100.000m

GDM - Ferns - Underlying Data: gdmytran

LCR / GDM
169
9
Added
13 Oct 2011

This dataset was first added to LRIS Portal on 13 Oct 2011.

This layer provides a transformation of environmental layer to best predict fern compositional turnover. Generalized Dissimilarity Modelling was used to produce a model of biotic composition in relationship to environment and biogeography. This model was used to transform and scale environmental layers to predict community composition. These transformed environmental layers can be used to predict commmunity composition changes, and to classify New Zealand into areas of similar biotic composition. The biotic data used for this model include all fern taxa from NVS recce data and estimated community compositions from pollen data.

Layer ID 242
Data type Grid
Resolution 100.000m

GDM - All Plants - Underlying Data: mattran

LCR / GDM
175
11
Added
13 Oct 2011

This dataset was first added to LRIS Portal on 13 Oct 2011.

This layer provides a transformation of environmental layer to best predict plant compositional turnover. Generalized Dissimilarity Modelling was used to produce a model of biotic composition in relationship to environment and biogeography. This model was used to transform and scale environmental layers to predict community composition. These transformed environmental layers can be used to predict commmunity composition changes, and to classify New Zealand into areas of similar biotic composition. The biotic data used for this model include all vascular plant taxa from NVS recce data and estimated community compositions from pollen data.

Layer ID 231
Data type Grid
Resolution 100.000m

GDM - Ferns - Underlying Data: calciumtran

LCR / GDM
152
10
Added
13 Oct 2011

This dataset was first added to LRIS Portal on 13 Oct 2011.

This layer provides a transformation of environmental layer to best predict fern compositional turnover. Generalized Dissimilarity Modelling was used to produce a model of biotic composition in relationship to environment and biogeography. This model was used to transform and scale environmental layers to predict community composition. These transformed environmental layers can be used to predict commmunity composition changes, and to classify New Zealand into areas of similar biotic composition. The biotic data used for this model include all fern taxa from NVS recce data and estimated community compositions from pollen data.

Layer ID 239
Data type Grid
Resolution 100.000m
Results 51 to 60 of 63